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Analytical treatment of the Green function singularity in
integral equations of scattering theory

Luká̌s Pichl and Jǐrı́ Horáček
Faculty of Mathematics and Physics, Charles University, V Holešovǐckách 2, 180 00 Praha 8,
Czech Republic

Received 18 April 1996

Abstract. A technique for solving the Lippmann–Schwinger equation in momentum space
based on Chebyshev polynomials is proposed. It is found that exact results are obtained for
standard low-energy nuclear separable potentials with an extremely low number of meshpoints.
The technique naturally leads to a class of analytically solvable separable potentials. The
application of the Chebyshev technique to two local standardN–N potentials, Yukawa and
Reid, is discussed.

1. Introduction

In many areas of physics we are often faced with the problem of evaluating singular integrals
of the Green function type [1]

I (E) = lim
ε→0+

∫ ∞

ET

|ψ(E′)〉〈ψ(E′)| dE′

E′ − E − iε
(1)

where|ψ(E)〉 is the wavefunction for the system at energyE and the integration is along
the real axis above a threshold atET. Much more complicated integrals of this type appear
in the theory of resonance [2, 3], in optical potential calculations [4] and in many other
areas of physics, see for example [5].

When solving the Lippmann–Schwinger (LS) equation in momentum representation [6]

tl(p, p
′) = Vl(p, p

′)+ 2

π

∫ ∞

0

q2Vl(p, q)tl(q, p
′)

E − q2 + iε
dq (2)

one usually transforms the integral on the right-hand side of (2) to a principal value integral

P
∫ ∞

0

q2Vl(p, q)tl(q, p
′)

E − q2
dq (3)

and treats the principal value integral numerically, substracting for example, the singularity
[6]. Since the numerical treatment of the singularity may cause problems we adopt another
approach here, which is based on the following identities [7]

P
∫ 1

−1

Tn(x)

x − y

dx√
1 − x2

=
{
πUn−1(y) n > 1, n ∈ N
0 n = 0 (|y| < 1)

(4)

P
∫ 1

−1

Un(x)

x − y

√
1 − x2 dx = −πTn+1(y) n ∈ N0 (|y| < 1) (5)
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whereTn andUn are Chebyshev polynomials of the first and second kind. If the integrals
(1) or (3) can be transformed to a sum of terms of the type (4) and (5), the singular integrals
may be evaluated analytically in terms of the respective Chebyshev polynomials and the
problems with the correct treatment of the singularity avoided. Moreover, as will be shown
below, this approach allows us to solve the LS equation analytically for a class of separable
potentials, including those widely used in nuclear physics. In addition, examples of physical
anomalies of non-local potentials can be displayed.

It is hoped that the present method may find applications in treating multichannel
scattering problems as well as other related areas.

2. Analytic treatment of the singularity

For simplicity we shall consider the partial waveK-matrix defined by the equation

Kl(q, q
′;E) = Vl(q, q

′)+ 2

π
P

∫ ∞

0
q ′′2Vl(q, q

′′)Kl(q ′′, q ′;E)
E − E(q ′′)

dq ′′. (6)

The phase shiftδl(E) is related to theK-matrix as

tanδl(E) = −kKl(k, k;E) (7)

where

E = k2

(we use units ¯h = 1, 2µ = 1). In order to apply our technique, the infinite range of
integration in equation (6) must be transformed to the compact interval〈−1, 1〉. There
exist several ways of transforming (6) to a finite interval [6]. Here we propose to use the
following transformation

q ′′ = C

√
1 + y ′′

1 − y ′′ y ′′ = q ′′2 − C ′′2

q ′′2 + C2
(8)

whereC is a positive constant. This transformation yields

K(y, y ′; y0) = V (y, y ′)+ κ P
∫ 1

−1

V (y, y ′′)K(y ′′, y ′; y0)

y ′′ − y0

(1 + y ′′)1/2

(1 − y ′′)3/2
dy ′′ (9)

where

κ = − 2

π

C3

C2 + E
(10)

y0 = E − C2

E + C2
. (11)

Let us define

F(y, y ′′) = V (y, y ′′)
(1 + y ′′)1/2

(1 − y ′′)3/2
(12)

then we can write

K(y, y ′; y0) = V (y, y ′)+ κ P
∫ 1

−1

F(y, y ′′)K(y ′′, y ′; y0)

y ′′ − y0
dy ′′. (13)

A word of caution is now in order: the integral kernelF(y, y ′′) contains a term,(1−y ′′)−3/2,
which is singular aty ′′ → 1 (i.e. at q ′′ → ∞). However, the potentialV (q, q ′) is a
decreasing function ofq ′ andq behaving typically asq−2 asq → ∞. If we assume this
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asymptotic behaviour we get that asy ′′ → 1, F(y, y ′′) ∼ (1−y ′′)−1/2. Hence equation (13)
as it stands is not useful for numerical integration. However, the quantity

√
1 − y ′′2F(y, y ′′)

is regular asy ′′ → 1 and the following expansion makes sense

f (y ′′; y, y ′) =
√

1 − y ′′2F(y, y ′′)K(y ′′, y ′; y0) ≈
N∑
1

an(y, y
′; y0)Tn(y

′′). (14)

The expansion coefficientsan are determined by the standard relation

an(y, y
′; y0) = 2

π

∫ 1

−1
F(y, y ′′)K(y ′′, y ′; y0)Tn(y

′′) dy ′′. (15)

Let us assume that the coefficientan are known (they depend on the unknown function
K(y ′′, y ′; y0)). Then inserting (14) into (13) we get

K(y, y ′; y0) = V (y, y ′)+ κ

N∑
1

an(y, y
′; y0)P

∫ 1

−1

Tn(y
′′) dy ′′√

1 − y ′′2(y ′′ − y0)
(16)

and finally, by making use of (4)

K(y, y ′; y0) = V (y, y ′)+ κ

N∑
1

an(y, y
′; y0)πUn−1(y0) (17)

thus performing the principal value integration analytically. The problem now reduces to
the calculation of the expansion coefficientan.

This can be done as follows. Since the integrand in equation (15) contains the term
(1 − y ′′2)−1/2 it can be evaluated by means of the Chebyshev quadrature with the weight
function

w(x) = 1√
1 − x2

i.e.

an(y, y
′; y0) = 2

π

M∑
1

wiF̃ (y, xi)K(xi, y
′; y0)Tn(xi) (18)

where

wi = w = π/M xi = cos((i − 1
2)w)

F̃ (y, x) = 1√
1 − x2

F(y, x) = V (y, x)
1 + x

1 − x
.

Inserting (18) into (17) we get

K(y, y ′; y0) = V (y, y ′)+ κ

M∑
1

m(y, xi; y0)K(xi, y
′; y0) (19)

where

m(y, x, y0) = π2

M
F̃(y, x)

N∑
n=1

Tn(x)Un−1(y0). (20)

Equation (19) can be solved either by collocation or by the Bubnov–Galerkin method [13].
Both methods reduce to solving a set of linear equations.
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3. Separable potentials

Before we proceed to the application of the proposed method to realistic potentials we find
it worthwhile to discuss separable interactions first. Separable potentials of the form

V (k, k′) = V0g(k)g(k
′) (21)

play an essential role in many applications of low-energy nuclear and atomic physics and
are of vital importance for three-body calculations [6, 4]. A widely used potential of this
form is the Yamaguchi potential [15]

V (k, k′) = V0
1

c2 + k2

1

c2 + k′2 . (22)

The LS equation with the potential (22) reduces to an algebraic equation. TheK-matrix
for a separable potential (21) can be writen as

K(k, k′;E) = V0g(k)g(k
′)

1 − (2V0/π)
P

∫ ∞

0
q2g2(q)/(E − q2) dq. (23)

In order to obtain theK-matrix the principal value integralI (E)

I (E) = V0 P
∫ ∞

0

q2g2(q) dq

E − q2
(24)

must be evaluated. After performing the transformation (8) withC = c in (22) we get

I (y0) = − V0C
3

C2 + E︸ ︷︷ ︸
ρ

P
∫ 1

−1

g2(y)(1 + y)1/2 dy

(1 − y)3/2
. (25)

Let us assume that the form factorg(y) can be expanded as follows:

g(y) =
√

1 − y

N∑
n=0

vnTn(y). (26)

The integrals on the right-hand side of equation (25) can be calculated analytically using
equation (4) since the product in the numerator in equation (26) is a polynomial iny. If
only the zero-order term in the expansion (26) is retained, i.e.

g(y) =
√

1 − yT0(y) T0(y) = 1 (27)

then

v(q, q ′) = 1√
1 + q2

1√
1 + q ′2 (C = 1). (28)

This potential was introduced a long time ago by Bander [14]. In a complete analogy we
can expand the potentialg(y) in the Chebyshev polynomials of the second kind

g(y) = (1 − y)

N∑
n=0

vnUn(y). (29)

Then

I (y0) = ρ
∑

vnvm P
∫ 1

−1

Un(y)Um(y)
√

1 − y2

y − y0
dy. (30)

This integral can be reduced to the basic integral (5). Again if only the zero-order term in
equation (29) is taken, i.e.g(y) = (1 − y) then

v(q, q ′′) = 1

1 + q2

1

1 + q ′′2 (31)
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which is the well known Yamaguchi potential [15].
With the potential (31), the functionf (y ′′; y, y ′) defined in equation (14) can be

calculated analytically and, as can easily be shown, it reduces to a second-order polynomial
in y ′′. This means that expansion (14) is exact forN = 2. Hence only three coefficients
a0, a1, a2 are non-zero and, as can easily be seen, these coefficient are accurately given by
equation (18) withM = 3. This means that with just three meshpoints, exact results
for the Yamaguchi potential are obtained. An analogous consideration for the Bander
potential, equation (28) implies that the exact results are obtained withM = 2, i.e. only
two meshpoints yield the exact results for all energies. This is a very remarkable property,
indicating that for potentials that do not differ much from this type of potential, a very low
number of mesh points may yield very accurate results.

Let us now consider higher terms in equations (27) and (29), taking into account one
more polynomial, i.e.

g1(y) =
√

1 − y(a0T0(y)+ a1T1(y)) (32)

and

g2(y) = (1 − y)(b0U0(y)+ b1U1(y)). (33)

In momentum space we get

g1(k) = 1√
C2 + k2

(
1 + β

k2 − C2

k2 + C2

)
(34)

and

g2(k) = 1

C2 + k2

(
1 + β

k2 − C2

k2 + C2

)
. (35)

For potentialsg1(k) andg2(k) the principal value integrals in equation (24) can easily be
evaluated with the results

I1(E(y0)) = − πV0C

2(C2 + k2
0)

(
β2y2

0 + β(β + 2)y0 + β2

2
+ 2β + 1

)
(36)

I2(E(y0)) = πV0

4C(C2 + k2
0)

(
β2y3

0 + 2βy2
0 + y0

(
1 − β2

2

)
− β

)
(37)

y0 = y(E).

In the coordinate representation, the ‘generalized’ Yamaguchi potential (35) has the form

g2(r) =
√
π

2
e−Cr(1 + β − βCr). (38)

This potential has very interesting properties. Since it may change sign (forβ 6∈ 〈−1, 0〉) in
dependence onβ andC, it describes a broader class of potential functions than the simple
Yamaguchi potential. Moreover, it clearly displays certain anomalies pertinent to non-local
interactions. Generally, the bound-state energy(E < 0) in the potential (21) is obtained
from the equation

1 − 2V0

π

∫ ∞

0

q2g2(q) dq

E − q2
= 0. (39)

The integral in (39) is no longer singular for negative and complexE and can be calculated
by using the residue theorem. In our case the bound state must exist, provided

−V0 >
2C3

1
2β

2 − β + 1
(40)
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for the potential (35) and

−V0 >
C

1 + 1
2β

2
(41)

for the potential (34). Its energy is implicitly given by

−2C

V0
(C + k0)

4 = k2
0

(
β2

2
+ β + 1

)
+ 2Ck0 + C2

(
β2

2
− β + 1

)
(42)

for the potential (35) and

− 1

V0
(C + k0)

3 = k2
0(1 + β)2 + 2Ck0

(
1 + β

2

)2

+ C2

(
1 + β2

2

)
(43)

for the potential (34). The bound-state wavefunction (E = −k2
0) for the potential (35) in

the coordinate representation reads

uk0(r) = e−Cr − e−k0r + β

[
e−Cr(1 − Cr)+ 1

k2
0 − C2

(2C2 e−Cr − (C2 + k2
0) e−k0r )

]
. (44)

At first sight we see that this is a very peculiar bound-state wavefunction.
(1) First of all, we observe that the bound-state wavefunctionuk0(r) may change sign

for somer 6= 0 (extra node). This is a very interesting feature since it is known that no
ground-state wavefunction in any local potential is allowed to change sign.

(2) The wavefunctionuk0(r) is regular at the origin, as it should be. It can easily be
shown that for a special choice ofk0 andC we can also haveu′

k0
(0) = 0. Such states are

known as spurious states [10].
(3) If k0 is smaller thanC, the asymptotic behaviour of the bound-state functionuk0(r)

is not determined by the energy of the bound state, as it must be in the case of local
interactions, but is fully determined by the parameterC of the potential.

(4) It is well known [10] that under certain conditions non-local separable interactions
may create zero-width resonances, the so-called continuum bound states (CBS), i.e. states
with a quadratically integrable wavefunction at realk. When such potentials, which describe
theN–N phase shifts surprisingly well [11], are used in three-body bound-state calculations
an unphysically large value for the triton binding energy is obtained and the collapse of
the bound-state wavefunction observed [12]. For CBS to exist, two conditions must be
simultaneously fulfilled,

I (k0) = π

2
(45)

g(k0) = 0 (46)

which ensure that the complex energy dependent denominator of theT -matrix vanishes for
real k0. The wavefunction of the CBS generated by the potential (35) does not depend on
the energy of the CBS (ECBS = k2

0) and has the simple form

uCBS(r) = Nr e−Cr . (47)

The CBS exists when

−V0 = 4C

(β + 1)(β + 2)
(48)

for potential (34) and when

−V0 = 8C3

β + 1
(49)
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for potential (35), provided|β| > 1 (for both potentials). Thus the existence of the CBS
may easily be controlled. More complicated potentials may be created by increasing the
number of terms in (26) and (29).

4. Results

In this section we apply the technique just described to local potentials designated to describe
low-energyN–N interaction. We shall consider two standard local potentials widely used
in the literature, namely the Yukawa potential [8]

V (r) = −V0
e−λr

r
(50)

and the Reid soft-core potential [9], which equals a sum of three Yukawa-type terms. In
momentum representation we have

Vl=0(k, k
′) = − V0

4kk′ ln

(
(k + k′)2 + λ2

(k − k′)2 + λ2

)
(51)

whereλ = 0.6329 fm−1 andV0 = 65.246 MeV fm for the Yukawa potential and

Vl=0(k, k
′) = 1

4λ1kk′

3∑
i=1

vi ln

(
(k + k′)2 + λ2

i

(k − k′)2 + λ2
i

)
(52)

with

λ1 = 0.7 fm−1 v1 = −10.436 MeV

λ2 = 2.8 fm−1 v2 = −1650.6 MeV

λ3 = 4.9 fm−1 v3 = +6484.2 MeV

for the Reid potential. Here we use ¯h2/(2µ) = 41.47 MeV (fm)2.

Table 1. Phase shifts for the Yukawa potential.

Number of Chebyshev polynomials

E (MeV) N = 10 N = 15 N = 20 N = 30 N = 40

12 1.5108 1.5062 1.5072 1.5057 1.5053
24 1.2847 1.2840 1.2827 1.2818 1.2819
48 1.0803 1.0813 1.0805 1.0803 1.0803
72 0.9689 0.9726 0.9727 0.9726 0.9725

104 0.8775 0.8804 0.8812 0.8810 0.8810
152 0.7874 0.7921 0.7928 0.7929 0.7928
176 0.7537 0.7593 0.7603 0.7604 0.7604

The LS equation in the form (6) was solved by expanding the functionf (y ′′; y, y ′),
equation (14), into Chebyshev polynomials with various numbers of terms,N , in this
expansion. The results are summarized in table 1 for the Yukawa potential and in table 2
for the Reid soft-core potential. The entries in the tables are phase shifts calculated at
several energiesEi ranging from 12–176 MeV.

From both tables we see that a very low number, 10–15, of Chebyshev polynomials gives
very accurate results exceeding in accuracy the most elaborated experimental values. It must
also be stressed that all the calculations were performed with one fixed energy-independent
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Table 2. Phase shifts for the Reid potential.

Number of Chebyshev polynomials

E (MeV) N = 10 N = 15 N = 20 N = 30 N = 40

12 0.9164 0.8675 0.8605 0.8608 0.8607
24 0.7163 0.6776 0.6860 0.6846 0.6846
48 0.4127 0.4460 0.4398 0.4402 0.4402
72 0.2551 0.2597 0.2637 0.2632 0.2630

104 0.0964 0.0807 0.0800 0.0803 0.0803
152 −0.1225 −0.1276 −0.1292 −0.1297 −0.1296
176 −0.2193 −0.2183 −0.2164 −0.2163 −0.2164

constantC in the transformation formula, equation (8). Often the transformation of the
infinite range to the finite one is performed with an energy-dependent parameterC(E) in
order to get the fastest convergence. However, this means that if the calculation is to be
repeated for another energy the momentum representation of the potentialV (p, p′) must be
recalculated at each energy and in many practical applications the evaluation of the function
V (p, p′) is the most time consuming part of the calculation. Here this nuisance is totally
avoided. It is also interesting to note that expanding in Chebyshev polynomials means
that the maximum absolute deviation between given and fitting functions is minimized—
the minimax best-fit criterion [16]. This feature may be of importance when fitting the
potentials to real data.
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[2] Kukulin V I, Krasnopolsky V M and Hoŕaček J 1988Theory of Resonances. Principles and Applications.

(Dordrecht: Kluwer)
[3] Domcke W 1991Phys. Rep.208 97
[4] Meyer H D 1986Phys. Rev.A 34 1797
[5] Newton R G 1982Scattering Theory of Waves and Particles(New York: Springer)
[6] Adhikari S K and Kowalski K 1991Dynamical Collision Theory and Its Applications(San Diego, CA:

Academic)
[7] Abramowitz M and Stegun I (ed) 1972Handbook of Mathematical Functions(New York: Dover)
[8] Adhikari S K 1974Phys. Rev.C 10 1623
[9] Reid R V 1968Ann. Phys., NY50 411

[10] Foldy L L and Lock J A 1979Phys. Rev.C 20 418
[11] Tabakin F 1968Phys. Rev.174 1208
[12] Rupp G, Streit L and Tjon J A 1985Phys. Rev.C 31 2285
[13] Delves L M and Mohamed J L 1985Computational Methods for Integral Equations(Cambridge: Cambridge

University Press)
[14] Bander M 1965Phys. Rev.B 322 138
[15] Yamaguchi Y and Yamaguchi Y 1954Phys. Rev.95 1628
[16] Thompson W J 1994Comput. Phys.8 161


